
Chapter 6: Commercial Best Practices Standards
No single standard is available in the computer industry. Most system developers design their own standards
and follow them in their organizations. These standards are variations of the basic IT system development
goals and principles. This chapter provides a study of the current commercial best practices standards and
tailoring standards guidelines.

Commercial System Development Standards

Commercial system development standards originate from the Institute of Electrical and Electronics Engineers
(IEEE) of Europe and Canada and the National Aeronautics and Space Administration (NASA). Almost every
sizable computer organization has its own established standard for system development. These standards
outline the system development life cycle and the content of required documents. Standards also define
system software quality assurance (QA), configuration management (CM), requirement traceability, system
design, implementation, testing, and independent verification and validation because they are needed for
embedded systems.

System development standards are necessary so that a computer system can interoperate among others.
Standards establish uniform system engineering techniques that are applicable throughout the system life
cycle. These standards incorporate the best practices that will be cost−effective from a system life−cycle
perspective. Standards are intended to be dynamic and responsive to the rapidly evolving system development
phases. Data item descriptions (DIDs) that are applicable to the standards are available and provide a set of
complete and concise documents that record and communicate information generated from specified
requirements.

Characteristics of a Good System Development Standard

A good system development standard is tightly composed and concentrates on system development goals and
principles. The standard establishes uniform requirements for system development that are applicable
throughout the system life cycle. The requirements of the standard provide the basis for insight into system
development, testing, and customer evaluation efforts. Some characteristics of a good standard are listed in
Box 6−1.

Box 6−1: Characteristics of a Good System Development Standard

Has a proper structure that represents clear thinking and a standardized means of communication• 
Establishes uniformity• 
Follows system development discipline• 
Fits in accordance with system development goals and principles and can be used with other standards• 
Follows the processes, standards, and procedures (rigorous)• 
Provides guidelines, references, road maps, and checkpoints• 
Involves quantitative feedback reviews and audits• 
Is user friendly and not user hostile• 
Includes reasonable documentation• 
Provides quality activities and evaluations• 
Provides visibility into system development status• 
Provides a template model that will introduce a suitable system development method and tools• 

73



Encourages use of reusable components• 
Encourages tailoring aspects• 
Establishes tests for the system environment• 
Standardizes system development and management processes• 
Provides means that will help develop systems that are efficient and cost−effective throughout a
product's life cycle.

• 

A good standard defines the requirements for an enterprise's total technical effort related to development of
products that include hardware and software and processes that provide life−cycle support for the products.
The objectives are to provide high−quality products and services with the desired practitioners and
performance features at an affordable price and on time. This involves developing, producing, testing, and
supporting an integrated set of products that includes hardware, software, networking, practitioners, data,
facilities, and material. The processes include services and techniques that are acceptable to customers,
stakeholders, and users.

System Management Standard

The system management standard prescribes an integrated technical approach to engineering of an IT system
and requires the application and management of the system's engineering process.

IEEE Standards

IEEE standards provide recommendations that reflect the state−of−the−art system engineering principles for
development and maintenance. The IEEE standards meet the requirements of a costly, complex systems'
quality, performance, and reliability. The purpose of a standard is to establish and apply requirements during
the acquisition, development, and support of software systems. IEEE has designed the following standards for
system development:

P730, Software quality assurance plans• 
P828, Standard for software CM• 
P829, Standard for software test documentation• 
P830, Guide for software requirements specifications• 
P1012, Standard for software verification and validation• 
P1016, Recommended practices for software design description• 
P1058, Standard for software project management plans• 
P1061, Standard for software quality metrics methodology• 
P1062, Practice for software acquisition• 
P1219, Standard for software maintenance• 
P1220, Standard for application and management of the systems engineering process• 
ISO/IEC 12207, Standard for information technology−software life−cycle processes• 
P1233, Guide for system requirements specifications• 

P1362, Guide for information technology−system definition−concept of operations document• 
P14143, Information technology−software measurement• 
P1420, Software reuse• 
P1471, Recommended practice for architecture description• 

 System Management Standard

74



Standard for Application and Management of the Systems
Engineering Process

The IEEE P1220 standard is for application and management of the systems engineering process. The purpose
is to provide a standard for managing a system from initial concept through development, operations, and
disposal. This standard defines the interdisciplinary tasks that are required throughout a system's life cycle to
transform customer needs, requirements, and constraints into a system solution. The standard guides the
development of systems that include humans, computers, and software for commercial and industrial
applications. This standard applies to an enterprise within an enterprise that is responsible for developing a
product design and establishing the life−cycle infrastructure needed to provide for life−cycle sustainment.

This standard specifies the requirements for the system's engineering process and its application throughout
the product's life cycle. The standard does not define the implementation of each system life−cycle process
but addresses the issues associated with defining and establishing supportive life−cycle processes early and
continuously throughout product development. In addition, the standard does not address the many cultural or
quality variables that must be considered for successful product development. The standard focuses on the
engineering activities necessary to guide product development while ensuring that the product is properly
designed to make it affordable to produce, own, operate, maintain, and eventually dispose of without undue
risk to health or the environment.

The P1220 standard describes an integrated approach to product development that represents the total
technical effort for the following:

Understanding the environments and the related conditions in which the product will be used and for
which the product must be designed to accommodate

• 

Defining product requirement in terms of functional and performance requirements, quality factors,
usability, producibility, supportability, safety, and environmental influences

• 

Defining the life−cycle processes for manufacturing, testing, distribution, support, training, and
disposal, which are necessary to provide support for products

• 

The standard covers the system engineering management plan, general requirements, the system engineering
process, and application of the systems engineering throughout the system life cycle and a list of
documentation that will be delivered for maintenance. The general requirements include the following
systems engineering processes:

Requirements analysis and validation• 
Functional analysis and verification• 
Synthesis• 
Design verification• 
Systems analysis• 
Control• 

The general requirements also include the following:

Policies and procedures for systems engineering• 
Planning of the technical effort• 
Development strategies• 
Modeling and prototyping• 
Integrated database• 
Product and process data package• 

 Standard for Application and Management of the Systems Engineering Process

75



Specification tree• 
Drawing tree• 
System breakdown structure (SBS)• 
Integration of the systems engineering effort• 
Technical reviews• 
Quality management• 
Product and process improvement• 

The application of systems engineering throughout the system life cycle includes the following:

System definition stage• 
Preliminary design stage• 
Detailed design stage• 
Fabrication, assembly, integration, and test stage• 
Production and customer support stage• 
Simultaneous engineering of products and services of life cycle processes• 

Standard for IT: Software Life−Cycle Processes

Software is an integral part of IT. The 12207 standard is for the software life cycle. The standard is produced
by the International Standards Organization (ISO) and the International Electro−Technical Commission
(IEC). The Electronic Industries Association (EIA) also contributed in this standard. This standard provides
industry with a basis for software practices. The ISO/IEC 12207 standard is packaged in the following three
parts:

IEEE/EIA 12207.0 is the standard for information technology−software life−cycle processes. This
standard contains basic concepts, compliance, life−cycle process objectives, and life−cycle data
objectives.

• 

IEEE/EIA P12207.1 is the guide for ISO/IEC 12207 and called the standard for information
technology−software life−cycle processes−life−cycle data. This standard provides additional guidance
on recording life−cycle data.

• 

IEEE/EIA P12207.2 is the guide for ISO/IEC 12207 and is called standard for information
technology−software life−cycle processes−Implementation considerations. This standard provides
additions, alternatives, and clarifications to the ISO/IEC 12207's life−cycle processes.

• 

A proliferation of standards, procedures, methods, tools, and environments are available for development and
management of software. This proliferation has created difficulties in software management and engineering,
especially in integrating products and services. The software discipline needs to migrate from this
proliferation to a common framework that can be used by software practitioners to speak the same language to
create and manage software. The 12207 standard provides such a common framework. This framework covers
the life of software from conceptualization of ideas through retirement and consists of processes for acquiring
and supplying software products and services. In addition, the framework provides for controlling and
improving these processes.

The highlights of this standard are as follows:

It is open ended rather than the specification of any particular software development method.• 
The software developer is responsible for selecting software development methods and CASE tools
that best support the customer's requirements.

• 

It provides the means for establishing, evaluating, and maintaining quality in software and associated• 

 Standard for IT: Software Life−Cycle Processes

76



documents.
The IEEE standard is further modified so that it will be acceptable as an international standard and be
a part of the ISO 9000 standard.

• 

Major features eliminate waterfall, top−down, and hierarchic implications.• 
It eliminates the functional area tracks (e.g., software development management, software
engineering, etc.), which tend to be waterfall oriented.

• 

It explains several life−cycle models, tells how an incremental or evolutionary development is
planned, and provides guidance for the selection of appropriate deliverables in each increment.

• 

It eliminates the requirements that partition the computer software configuration item (CSCI) into
computer software components (CSCs) and computer software units (CSUs). This requires only a
CSCI to be partitioned into components and uses the method that is proposed in the software
development plan (SDP) that the software developers create.

• 

It requires that the software developer lay out a software development process and that it conforms to
the life−cycle model, which has been established for the software.

• 

It acknowledges that each software development activity is an update or refinement of what has gone
before rather than a first−time occurrence.

• 

It reorganizes activities that occur at the same time into activities that are concerned with a given
software development activity.

• 

It explains how each activity is interpreted in the context of builds (e.g., How should the planning
activity be divided among builds? How should requirements analysis, design, coding, testing, and
product evaluation be performed in incremental builds?).

• 

It covers in−process reviews and supplements or substitutes for formal reviews.• 
It identifies system requirements analysis and system design separately.• 
It eliminates the document−driven implications of the ISO 9000 standard.• 
The language of the standard is changed from 'software and documentation' to the more generic
'software development products,' which acknowledges nondocument representations, such as data in
CASE tools.

• 

It separates activity requirements from documentation requirements and emphasizes that software
development activities need not result in documents.

• 

It clarifies that deliverable documents are the required outcome of an activity only when so specified
on a contract data requirements list (CDRL).

• 

It is explicit in acknowledging electronic representation of information in lieu of documents.• 
It adds guidance about ordering the executable (and possible source) code via contract line item
number (CLIN) rather than on a CDRL.

• 

It adds explicit permission and delivers CASE tool contents for CDRL.• 
It clarifies and makes the customer's requirements more consistent for each level of testing.• 
It provides clear guidelines for software support.• 
It expands and clarifies the requirements, which concern incorporation of reusable software.• 
It specifies that nondevelopmental items (possibly modified) will be incorporated into systems under
development if they meet user needs and will be cost−effective over the life of the system.

• 

It interprets this policy for software by itemizing considerations that determine if a reusable software
component will meet user needs and be cost−effective over the life of the system.

• 

It requires that the software developer analyze candidate reusable components in light of these
considerations, report the findings and recommendations to the customer, and incorporate reusable
components that meet the criteria.

• 

It specifies allowable substitutions for this standard's required documentation when reusable software
is incorporated.

• 

It makes a preliminary statement about other allowable substitutions (e.g., in testing and formal
reviews).

• 

It defines clearly the interface between software testing and system testing.• 
It has a section for planned software QA requirements.• 

 Standard for IT: Software Life−Cycle Processes

77



It adds a requirement that will identify, collect, and apply management indicators, and it provides a
list of candidate indicators that aid in the selection of a set.

• 

It revises the requirement on risk management with emphasis on risk as a guiding principle for
planning and managing projects.

• 

Box 6−2 contains a list of 22 individual DIDs that are applicable to this standard.

Box 6−2: List of Data Item Descriptions

Plans

Software development plan (SDP)• 
Software installation plan (SIP)• 
Software support plan (SSP)• 

Concept and requirements

Operational concept document (OCD)• 
System/segment specification (SSS)• 
Software requirements specification (SRS)• 
Interface requirements specification (IRS)• 

Design

System/segment design document (SSDD)• 
Software design document (SDD)• 
Interface design document (IDD)• 
Database design document (DBDD)• 

Test

Software test plan (STP)• 
Software test description (STD)• 
Software test report (STR)• 

User or operator

Software user's manual (SUM)• 
Software input/output manual (SIOM)• 
Computer center software operational manual (CCSOM)• 
Computer system operator manual (CSOM)• 

Support

Version description document (VDD)• 
Software product specification (SPS)• 
Firmware support manual (FSM)• 
Computer instruction set architecture• 

 Standard for IT: Software Life−Cycle Processes

78



A set of six consolidated DIDs combines the DIDs for plans, requirements, design, testing, user or operator
manuals, and support; a single DID for small projects summarizes all other DIDs. These DIDs describe a set
of documents that record the required information by this standard. The manager should produce deliverable
data that use automated techniques.

ISO 9000 Standards

ISO 9000 standards are published by the ISO. The ISO 9000 series consist of the following quality standards:

ISO 9000• 
ISO 9001• 
ISO 9002• 
ISO 9003• 
ISO 9004• 

ISO 9000 is an overview for selecting the appropriate standard. ISO 9001 covers the 20 elements of an
effective quality management system (QMS), which include design, production, servicing, and installation:

Management responsibility1. 
Quality system2. 
Contract review3. 
Design control4. 
Document and data control5. 
Purchasing6. 
Control of customer−supplied product7. 
Product identification and traceability8. 
Process control9. 
Inspection and testing10. 
Control of inspection measuring and test equipment11. 
Inspection and test status12. 
Control of a nonconforming product13. 
Corrective and preventive action14. 
Handling, storage, packaging, preservation, and delivery15. 
Control of quality records16. 
Internal quality audits17. 
Training18. 
Servicing19. 
Statistical techniques20. 

ISO 9002 addresses all elements of a QMS except design. ISO 9003 focuses on final inspection and testing.
ISO 9004 provides implementation guidance and can be used to expand and improve an organization's quality
system. If ISO 9004 is in place, an organization can achieve the ISO 9001 standard.

The ISO 9000 series was first published in 1987 and is currently under review. Under the revision, ISO 9002
and ISO 9003 will be incorporated into a new ISO 9001. The new version of ISO 9001 will include the
following:

All types of products and services• 
A single standard with flexibility of use• 
A more generic approach to conform to different types of industries• 

 ISO 9000 Standards

79



Alignment with other standards• 
Consistent terms, phrases, and definitions• 

According to James S. Bigelow, a member of the ISO Technical Committee, several boundaries have been
identified for the revised ISO 9001:

Preventing customer dissatisfaction rather than achieving a competitive advantage• 
Complying with requirements instead of offering guidance• 
Seeking effectiveness over efficiency• 
Seeking minimum QA requirements rather than best practices• 
Meeting customer requirements rather than enhanced expectations• 
Seeking pass/fail instead of degree of performance• 
Focusing on improving processes by reducing risks and preventing failures• 

ISO 9001 is an independent standard that can adapt within reason to meet the needs of an organization
(Fellenstein, 1999).

Tailoring Standards Techniques

Tailoring standards for an individual application is essential. Tailoring means the selection of only those
products, activities, and reviews that fit the characteristics and are essential to a particular project. The
purpose of tailoring helps in the evaluation of requirements in a standard that will save money, prevent
duplication, and preserve the schedule of the project. The system developer can recommend tailoring the
standards, but ultimately the customer, users, and stakeholders make the final decision.

The result of the tailoring process is reflected in the statement of work (SOW) that prescribes the tasks and
reviews. The CDRL contains all of the deliverable documentation. Sometimes clarification is necessary rather
than a deletion of requirements. In these cases, the DID for a product can be modified, which will make it
unique to the project. When tasks are being added, they may be included in the SOW, which leaves the DID
unchanged.

The following are factors that the manager should consider when tailoring a standard:

System development process that will be used• 
System characteristics and intended end use• 
Acquisition strategy and type of project management• 
Acceptable risk• 
Schedule• 
Budget• 
Development visibility required• 
System maintenance concept• 

Tailoring standards also depends on the class of software. Software classification includes operational,
support, system, diagnostic, and automatic test equipment. The tailoring factor changes for the software that is
being developed, modified, and reused. Commercial off−the−shelf (COTS) software or nondevelopmental
items (NDI) also affect the tailoring factor.

 Tailoring Standards Techniques

80



Guidelines for Tailoring

The tailoring process is performed many times throughout the life cycle of a system. Many different events
trigger the need for the tailoring of the standards and DID. Tailoring should take place every time the system
enters a new phase in the life cycle. Phases include concept exploration, demonstration and validation,
full−scale development, and production and deployment. The levels and types of documentation that are
needed for each phase vary and should be reflected in the tailoring process. The suggested guidelines for
tailoring a standard are as follows:

Classify the required system by development or nondevelopment category.• 
Select activities and reviews in accordance with applicable standards and DID.• 
Select deliverable products.• 
Tailor the DID.• 

IT Project Standards Checklist

Establish project management standards that include the following:

Project progress reporting process

Statement of work−clarification procedures

Project management graphic representations

Staff qualifications and experiences

Cost analysis

Schedule influence

Risk analysis management process

Metrics indicators

Review process and procedure

Tailoring standards plan

Documents deliverable process

Education and training plan

Effective dialog and communication process between system developers and customers, users, and
stakeholders

System delivery process

System products acceptance schema

• 

Establish a system requirements analysis standard that includes the following:• 

 Guidelines for Tailoring

81



System requirements analysis graphic diagrams

Maintenance of a system requirements list

System external interfaces

Modeling of customer requirements

Requirements feasibility analysis

Requirements traceability schema

Determination of system complexity

System hardware diagram
Establish a system design standard that includes the following:

System design graphic representations

Allocation of software and hardware requirements

Software development plan

Selection of a suitable method

Selection of a suitable computer−aided software engineering (CASE) tool

Planning for software quality

Planning for increment software development

Planning for software testing

Planning for CM

Planning for corrective action

Reviewing and auditing by the customer

System behavioral design

System architectural design

• 

Establish a software requirements analysis standard that covers the following:

Software requirements analysis graphic diagrams

Maintenance of software requirements list

Creation of prototyping models

Interface requirements

• 

 Guidelines for Tailoring

82



Establishment of a database

Establishment of a real−time influence

Determination of sizing and timing requirements

Software requirements traceability

Plan for testing requirements
Establish a software design standard that contains the following:

Architecture design diagrams

Behavioral design diagrams

Object diagrams

Determination of algorithms

Data structure

Data types

Associated operations

Database logical design

Formation of packages, subprograms, functions, and tasks

Functional cohesion

Data coupling

Software design requirements traceability

Compilation dependencies diagrams

Identification, raising, and handling of exceptions

Setting up of a software design file

Software reuse schema

Interfaces

Plan for testing design

• 

Establish a code style standard that includes the following:

Coding formatting

Horizontal spacing

♦ 

• 

 Guidelines for Tailoring

83



Indentation

Alignment of operators

Alignment of declarations

Blank lines

Paginations

Number of statements per line

Source code line length
Readability

Underscores

Numbers

Capitalization

Abbreviations

♦ 

Commentary

General comments

File headers

Unit function description

Marker comments

Highlighting

♦ 

Naming conventions

Names

Type identification

Object identification

Program unit identification

Constants and named numbers

♦ 

Using types

Declaring types

Enumeration types

Overloading enumeration littorals

♦ 

 Guidelines for Tailoring

84



High−level program structure

Separate compilation capabilities

Subprograms

Functions

Packages

Functional cohesion

Data coupling

♦ 

Syntax

Loop names

Block names

Exit statements

Naming and statements

♦ 

Parameters lists

Formal parameters

Named association

Default parameters

Mode indication

♦ 

Types

Derived types

Subtypes

Anonymous types

Private types

Data structures

Heterogeneous data

Nested records

Dynamics data

♦ 

Expressions

Range values

♦ 

 Guidelines for Tailoring

85



Array attributes

Parenthesized expressions

Positive forms of logic

Short−circuit forms of the logical operators

Type−qualified expressions and type conversion

Accuracy of operations with real operands
Statements

Nesting

Slices

Case statements

Loops

Exit statements

Safe statements

'Go to' statements

Return statements

Blocks

♦ 

Visibility

Use clause

Rename clause

Overloaded subprograms

Overload operators

♦ 

Exceptions

Disasters versus state information

User−defined, implementation−defined, and predefined exceptions

Handlers for others

Propagation

Localization of the cause of an exception

♦ 

Erroneous execution♦ 

 Guidelines for Tailoring

86



Unchecked conversion

Unchecked deallocation

Dependence on parameters−passing mechanism

Multiple address clauses

Suppression of exception check

Initialization
Tasking

Tasks

Task types

Dynamic tasks

Priorities

Delay statements

♦ 

Communication

Defensive task communication

Attributes count, collable, and terminated

Shared variables

Tentative rendezvous constructs

Communication complexity

♦ 

Termination

Normal termination

Abort statement

Programmed termination

Abnormal termination

♦ 

 Guidelines for Tailoring

87


